Spaghetti-Snapping Machine Finally Solves Problem That Has Stumped The World’s Greatest Minds

Did you know that a single strand of spaghetti is referred to as a spaghetto? That’s not all you didn’t know: if you grab a spaghetto, hold it at both ends, and snap it in two, you will almost certainly end up with three fragments, not two halves, that will be uneven in length. Go on, give it a go right now – I’ll wait.

As it turns out, this conundrum, which we’ll refer to as the Spaghetto Problem (SP), has never been explained. It’s intriguing enough in itself, but as with plenty of simple things like this, understanding why it never breaks into two halves has implications for mathematics and physics. It was even pondered over by renowned physicist Richard Feynman, who died not coming up with an adequate solution.

As spotted by ScienceAlert, several 2005 papers dedicated to the subject found out why such spaghetto bending ends up making more than just two fragments. Post-break, the spaghetti strands snap back, which sends violent ripples throughout the strands, shattering them into multiple pieces.

So that’s one part of SP done and dusted. But why, the world screamed in unison, does it never just cleanly break? Is it at all possible?

Recommended For You

TigerPress Volume 2 Expansion Pack DS

Reduced expansion pack containing the 3 x HTML themes and bonuses.

WP Contentio - Main - Unlimited Site

WP Contentio - The last content creation solution you'll need.

Enter an international team of researchers, whose new study in the Proceedings of the National Academy of Sciences has perhaps officially solved the SP once and for all – and which has potentially earned them an Ig Noble prize nomination. As pointed out in an accompanying press release, it turns out those 2005 papers already netted the French researchers behind them one of those coveted awards a year later.

So how did these newcomers do it? Turns out that, in order to ascend to the status of Spaghetti Sherlocks, they needed to build a bespoke spaghetto-twisting device. As you can see here, it’s a rather specific design, one that bends and twists and distorts single spaghetto strands in a plethora of ways.

The scientists – from MIT, Cornell University and the University of Aix in Marseille – found out from a series of more basic experiments that twisting the spaghetto very strongly resulted in a clear, two-strand break.

Their device, which was being recorded by a very high-speed camera, accomplished the same feat when the strand was first twisted nearly 360°, before the clamps moved together to break it.

A mathematical model, developed using the work of those venerated French scientists, elucidated matters further: that snap-back effect is dampened by the rapid twist, which dominates the energy release as it unwinds. This prevents further snaps.

The real deal, compared to the mathematical model (below). Heisser et al./PNAS

The upside to solving SP is that it could have applications in a wide range of mechanical systems relating to stress, strain, and failure. At present, though, it’s not clear how other pasta types are affected.

Recommended For You

Timeless Traffic

Timeless Traffic

Lead Siphon Done For You Templates Monthly

50 DFY Templates ready to use. 25 more DFY Templates added each month.


Grow Your Authority and Profits Daily

Original Article : HERE ; This post was curated & posted using : RealSpecific

Thank you for taking the time to read our article.

If you enjoyed our content, we'd really appreciate some "love" with a share or two.

And ... Don't forget to have fun!

Recommended Products

Live Vid Ranker FE - Personal Version

A Point And Click, Cloud-Based Software Tool That Makes It Easy To ‘Go Live’Within Minutes, LiveVidRanker Creates Hundreds Of Unique Live Streams With Just ONE VideoDominate Hundreds Of Google And YouTube Page #1 Rankings For Unlimited, FREE Traffic

Smart Funnelz Traffic PRO (Discount)

Create Unique Funnels That Guarantee To Sky Rocket Your Opt-In Rate And Generate Leads, Sales and Commissions on Demand!

Comments are closed.